Method for Assembling Decellularized Tissue Extracellular Matrix in 3D Tumor Spheroids

Cell culture investigations using spheroids and organoid models have had a major impact on biomedical advancement as alternative sources for costly, in vivo animal testing.  However, these 3-D cell constructs are limited in that they do not integrate extracellular components within the structure important for more reliable and accurate biological responses.  Extracellular matrix (ECM) from decellularized tissues provide a physical scaffolding and offers crucial biochemical and biomechanical cues for cellular constituents.

A Most Efficient and Convergent Principal Component Analysis (PCA) Method for Big Data

Big data usually means big sample size with many outliers, in which traditional scalable L2-norm principal component analysis (L2-PCA) will fail. Current existing L1-norm PCA (L1-PCA) methods can improve robustness over outliers, however, its scalability is usually limited in either sample size or dimension size.  The inventor proposes an online flipping method to solve L1-PCA challenges, which is not only convergent asymptotically (or with big data), but also achieves most efficiency in the sense each sample is visited only once to extract one principal component (PC).

CytoSig: A Software Platform for Predicting Cytokine Signaling Activities, Target Discovery, and Clinical Decision Support System (CDSS) from Transcriptomic Profiles

Cytokines are a broad category of intercellular signaling proteins that are critical for intercellular communication in human health and disease. However, systematic profiling of cytokine signaling activities has remained challenging due to the short half-lives of cytokines, and the pleiotropic functions and redundancy of cytokine activities within specific cellular contexts.

Target for Anti-Tumor Immune Responses

The Surgery Branch of the National Cancer Institute is seeking statements of capability or interest from parties interested in collaborative research to carry out genotypic as well as phenotypic analysis of the 888 mel cell line in order to better understand the nature of tumor cells that respond to therapy. In addition, this cell line can be used as a target of humoral or cell mediated immune responses as a part of studies characterizing the nature of immune responses directed against tumor cells. 

Improved Production of Prenylated Protein in Insect Cells

KRAS and other Ras-family enzymes are an important component of over 30% of human cancers, however, no effective therapeutics targeting Ras or Ras-driven cancers are currently available.  The production of Ras proteins in vitro is required for the identification and characterization of Ras targeting drugs.  An important step in producing the Ras protein involves prenylation of the C-terminus of the protein via farnesyltransferase, a modification that does not occur in prokaryotic organisms.  Previous attempts to generate properly processed Ras in eukaryotic cells has

Use of Replicators in Gene Therapy

Gene therapies offer promising prospects of treating a wide variety of human diseases. In one method, a gene therapy vector can be utilized to deliver an unmutated copy of a gene, called a transgene, to replace a mutated gene in order to treat the genetic disorder. However, lack of expression of a therapeutic transgene and uncontrolled gene silencing are still major obstacles for safety and efficacy of these gene therapy interventions.

Human Synovial Sarcoma Cell Line A2243

Synovial sarcoma is a cancer affecting mesenchymal cells in connective tissues. This rare cancer is typically linked to genetic abnormalities or exposure to radiation. Metastatic growth throughout the body can occur primarily through blood circulation. More than 90% of synovial sarcomas show a characteristic t(X;18)(p11;q11) translocation involving the SYT and SSX genes. The resulting SYT-SSX abnormal fusion protein causes misregulation of downstream gene expression, leading to tumor formation.

A New Class of Stable Heptamethine Cyanine Fluorophores and Biomedical Applications Thereof

Heptamethine cyanines are among the most widely used near-IR fluorophores. The near-IR range (between about 650 nm and 900 nm) is very useful for imaging applications due to the absence of background autofluorescence. Despite extensive use, many of these fluorophores suffer from chemical instability. Specifically, most of the current and commonly used fluorophores undergo a phenoxy to thiol exchange reaction in the presence of primary thiols. This exchange reaction is problematic during conjugation reactions of cysteine containing macromolecules.

Rapid Methods for Human Artificial Chromosome (HAC) Formation

Gene therapy is a promising strategy to treat a wide range of human diseases, and several gene therapy vectors have been developed to deliver these novel treatments. However,  risks and challenges of using these vectors remain, such as: gene integration, potential infection, immune response and maintaining long term, stable gene expression. Human artificial chromosomes (HACs) provide a unique opportunity to develop a new generation of nonviral vectors for therapeutic use as gene expression and delivery systems.

Brain endothelial reporter cells

Aberrant function of the WNT-b-catenin pathway is a common underlying cause of tumorigenesis.  Despite the attractiveness of the WNT-b-catenin pathway as a therapeutic target, WNT dependent cell signaling is also crucial for normal tissue development, and is ubiquitous in all organs.  As a result, WNT-b-catenin pathway inhibitors cause many side effects and fail to meet FDA safety standards.  A more targeted approach is needed to develop safe and effective WNT signaling inhibitors.