Human-derived Monoclonal Antibody for Treatment of Ebola Virus Infection

Ebola virus infection can lead to severe hemorrhagic fever, known as Ebola virus disease (EVD), which is often fatal. The Zaire species of Ebola virus (EBOV) was responsible for the largest Ebola outbreak in history, which occurred in 2014. Scientists at the NIAID Vaccine Research Center have developed a human monoclonal neutralizing antibody, mAb114 for treatment and prevention of EBOV infection. Because there are very few treatments available to treat or prevent EBOV infection, there is a great need to develop effective pre- and post- exposure therapeutics before another outbreak occurs.

Human and Veterinary Cancer Therapeutic Agent Utilizing Anthrax Toxin-Based Technology

Due to the disorganized nature of blood vessels that run through tumors, chemotherapeutic agents often fail to penetrate tumors and kill cancer cells at the tumor’s center. This can lead to ineffective chemotherapeutic treatments, because tumors can quickly grow back if the entire tumor is not destroyed. NIH researchers have developed a therapeutic agent that solves this problem facing current chemotherapy treatments.

Development of a Transferrable Norwalk Virus Epitope and Detector Monoclonal Antibody

Noroviruses are now recognized as the major cause of non-bacterial gastroenteritis in all age groups, and efforts are underway to develop an effective vaccine. The lack of a robust cell culture system for human noroviruses has complicated vaccine development. Hence, norovirus virus like particles (VLPs) have played an important role in the understanding of virus structure, immune response, antigenic diversity, and vaccine design.

Human and Veterinary Cancer Therapeutic Agent Utilizing Anthrax Toxin-Based Technology

Due to the disorganized nature of blood vessels that run through tumors, chemotherapeutic agents often fail to penetrate tumors and kill cancer cells at the tumor’s center. This can lead to ineffective chemotherapeutic treatments, because tumors can quickly grow back if the entire tumor is not destroyed. NIH researchers have developed a therapeutic agent that solves this problem facing current chemotherapy treatments.

Broadly Neutralizing Antibodies Against HIV-1 Directed to the CD4 Binding Site of HIV Envelope Protein

Inhibiting the ability of HIV-1, the virus that causes AIDS, to infect cells is one approach to both prevention and treatment of HIV. Scientists at the NIAID Vaccine Research Center have isolated and characterized neutralizing antibodies (VRC01, 02, 03, and 07) that bind to the CD4 binding site of HIV-1 envelope glycoprotein gp120. These human monoclonal antibodies can potentially be used as a therapeutic to: (1) treat an HIV infection, (2) decrease and prevent HIV-transmission from mother to infant, and (3) be effectively combined with anti-retroviral drug therapy.

Neutralizing Antibodies to Influenza HA and Their Use and Identification

The effectiveness of current influenza vaccines varies by strain and season, in part because influenza viruses continuously evolve to evade human immune responses. While the majority of seasonal influenza infections cause relatively mild symptoms, each year influenza virus infections result in over 500,000 hospitalizations in the United States and Europe. Current standard of care for individuals hospitalized with uncomplicated influenza infection is administration of neuraminidase inhibitors.