Encircling Suture Delivery System

The invention provides a novel delivery system for delivering an encircling suture which includes two separate hollow limbs held together at an articulation by the suture to be delivered. The suture can extend through the hollow limbs, which slide along the suture. The distal ends of the limbs can be compressed into a desired delivery shape that allows the limbs to be advanced through the lumen of a delivery catheter (e.g., a transcutaneous, transvascular or intraluminal catheter) into any body cavity.

Device for Non-Surgical Tricuspid Valve Annuloplasty

This is a non-surgical tricuspid annuloplasty to treat functional tricuspid valve regurgitation, meaning regurgitation with intact valve leaflets. The device is delivered using novel catheter techniques into the pericardial space and positioned along the atrioventricular groove. A compression member is positioned along the tricuspid annular free wall and tension applied through a variably-applied tension element. In the best embodiment, the compression member has an M shaped portion with at least two inflection points between the segments of difference curvatures.

MRI Scanner Bore Covering

This invention pertains to a bore covering for creating controlled environments and specifically for maintaining temperature within the bore of an MRI scanner. The bore covering includes a covering sheet with fastening means (e.g., weak-tack adhesive, pressure-sensitive adhesive or low-tack adhesive) around its inner surfaces that permits reversible attachment to the scanner. The adhesive ends can be peeled away to expose an edge of the bore opening or the entire sheet may be constructed with peel away gaps so that warm air can be pumped into the bore.

Aortic Access from Vena Cava for Large Caliber Transcatheter Cardiovascular Interventions

The invention pertains to a device and method for transcatheter correction of cardiovascular abnormalities, such as the delivery of prosthetic valves to the heart. Featured is a device implant for closing a caval-aortic iatrogenic fistula created by the introduction of a transcatheter device from the inferior vena cava into the abdominal aorta. The occlusion device includes an expandable transvascular implant with an elastomeric surface capable of extending between a vein and artery which conforms to the boundaries of an arteriovenous fistula tract between the artery and vein.

Device for Vascular Dilation

The invention is an enhanced vascular dilator that eliminates the vascular injury caused by the size mismatch between vascular introducer sheaths and vascular dilators, as the two are advanced into a blood vessel. The invention provides a “shoulder” to match the diameter of the introducer sheath so that there is a smooth transition, without size mismatch, between the dilator and the introducer sheath. The invention allows the dilator to be withdrawn in segments from the introducer sheath.

Human iPSC-Derived Mesodermal Precursor Cells and Differentiated Cells

Cells, cell culture methods, and cell culture media compositions useful for producing and maintaining iPSC-derived cell lines that are of higher purity and maintain cell type integrity better than current iPSC-derived cell lines are disclosed. Human induced pluripotent stem cells (hiPSCs) can be generated by reprogramming somatic cells by the expression of four transcription factors. The hiPSCs exhibit similar properties to human embryonic stem cells, including the ability to self-renew and differentiate into all three embryonic germ layers: ectoderm, endoderm, or mesoderm.

Highly Sensitive Tethered-Bead Immune Sandwich Assay

This technology is a highly sensitive tethered-bead immune sandwich assay. Analyte molecules are captured between two antibodies, a capture antibody and a detection antibody. The capture antibody on a micron-size bead binds analyte from a sample fluid. The bead-captured analyte is then exposed to a “detection” antibody that binds to the bead-captured analyte, forming a “sandwich”. The sandwiched analyte-bead complex then connects to a flexible polymer (such as DNA) anchored on a solid surface to form tethered particles.

T Cell-Based Adoptive Transfer Immunotherapy for Polyomavirus-Associated Pathologies

Available for licensing are methods to generate T cells responsive to multiple polyomaviruses. The resulting T cell populations could be useful in treating immunosuppressed individuals with polyomavirus infections or polyomavirus-associated pathologies such as Merkel cell carcinoma (MCC), polyomavirus-associated nephropathy (PVAN), hemorrhagic cystitis, progressive multifocal leukoencephalopathy (PML), and trichodysplasia spinulosa (TS). The methods could also be used to restore polyomavirus-specific immunity in immunocompromised individuals.

A Novel Therapeutic Vector for Hemoglobin Disorders

Investigators at the National Heart, Lung, and Blood Institute have designed a novel lentiviral vector as a potential gene therapy for sickle cell anemia and beta-thalassemia. The novel lentiviral vector encodes the beta-globin gene in a forward orientation and can produce 5-10 fold higher viral titer and 4-10 fold higher gene transfer efficiency to hematopoietic stem cells than reverse-oriented lentiviral vectors. In vivo studies conducted in rhesus macaques show beta-globin production after transplantation with this novel lentiviral vector.