Calcium (Ca2+) Flux-Dependent Method to Detect and Isolate Tumor Reactive T Cell Receptors (TCRs)


T cells with T cell receptors (TCRs) for cancer-specific antigens are used for adoptive cell therapy (ACT), wherein a patient’s T cells are redirected against their own cancer. However, these isolated T cells may require further ex vivo manipulation to enhance their anti-tumor activity. The ex vivo manipulation of these T cells, or the selection of less functionally inert T cells, and genetic insertion of tumor specific TCRs may circumvent these limitations.

To address this issue, it is crucial to recognize, select, and isolate tumor reactive T cells from a plethora of other non-reactive ones. When re-infused into the patient, non-reactive T cells may impede the effectiveness of an immunotherapy. However, the current methodologies to identify, select, and isolate these tumor reactive T cells, are laborious, time-consuming, and cost intensive. 

Researchers at the National Cancer Institute (NCI) have developed a novel method which isolates and sequences tumor reactive TCRs from cancer specific T cells using calcium ion (Ca2+) flux as the marker of TCR ligation and activation. TCRs identified by this method were found to be tumor specific and can be used to redirect the patient’s T cells against potential tumor targets. This method requires minimal manipulation, and drastically reduces the time and cost of the tumor specific TCR identification and isolation process. NCI seeks research co-development partners and/or licensees for this invention.



Potential Commercial Applications: Competitive Advantages:
  • T-cell isolation for ACT or TCR therapy 
  • Personalized immunotherapy to treat cancer patients
  • Research tool to identify mutation-specific TCRs
 
  • Rapid and cost-effective method for tumor specific TCR identification and isolation
  • Widely applicable to different types of cancers
  • Limited off-target effects
  • Patient-specificity to improve efficacy of ACT


Development Stage:
Discovery (Lead Identification)

Related Invention(s):
E-229-2014
E-233-2014
E-067-2017
E-061-2020


Inventors:

Douglas Palmer (NCI)  ➽ more inventions...

Ana Pasetto (NCI)  ➽ more inventions...

Nicholas Restifo (NCI)  ➽ more inventions...

Steven Rosenberg (NCI)  ➽ more inventions...


Intellectual Property:
Application No. 62/902,184

Collaboration Opportunity:

Licensing and research collaboration


Licensing Contact:
John Hewes, Ph.D.
Email: John.Hewes@nih.gov
Phone: 240-276-5515

OTT Reference No: E-168-2018
Updated: Sep 3, 2020