Antibody and Immunotoxin Treatments for Mesothelin-expressing Cancers

Mesothelin is a cell surface protein that is highly expressed in aggressive cancers such as malignant mesothelioma, ovarian cancer, pancreatic cancer, lung cancer, breast cancer, cholangiocarcinoma, bile duct carcinoma and gastric cancer. As a result, mesothelin is an excellent candidate for tumor targeted immunotherapeutics. However, the antibodies against mesothelin that are available for clinical trials are of murine origin. These antibodies have the potential to elicit immune responses in patients, which may adversely affect the ability to provide patients with repeated doses.

Chimeric Antigen Receptors that Recognize Mesothelin for Cancer Immunotherapy

Chimeric antigen receptors (CARs) with high affinity for mesothelin that can be used as an immunotherapy to treat cancers that express mesothelin, such as pancreatic cancer, ovarian cancer, and mesothelioma. The technology includes CAR constructs with one of three different mesothelin-specific antibody portions, including either the mouse-derived SS or SS1 antibody fragments or the human HN1 antibody fragment.

Methods For Treating or Preventing Inflammation and Periodontitis

Bone-loss-related diseases, such as periodontitis, are characterized by an imbalance between the formation and activity of osteoblasts and osteoclasts, leading to bone loss. There are several signaling pathways that participate in the osteoclastogenesis process. Finding inhibitors of these pathways and other osteoclastogenesis-related pathways may have an effect on bone-loss diseases.

Improved HIV Vaccines Through Ras Activation

Researchers at the National Cancer Institute (NCI) have developed a new method of improving the efficacy of vaccines in patients with human immunodeficiency virus (HIV) by activating Ras. This method can be used to develop more efficacious vaccine compositions by activating Ras before, during, or after vaccination. Additionally, the researchers discovered that modulation of the Ras pathways could be a predictive biomarker of protection against HIV.

High Efficacy Vaccine and Microbicide Combination For Use Against HIV

Human immunodeficiency virus (HIV) remains a major global health challenge despite the advancement made in development of effective antiretrovirals (ARVs). ARVs are effective at limiting replication and spread of the virus, and progression to acquired immuno-deficiency syndrome (AIDS). However, ARVs often lead to emergence of drug-resistant virus strains insensitive to treatment and with toxic effects following long-term usage.

Modified griffithsin tandemers for enhanced activity and reduced viral aggregation

Griffithsin (GRFT) is a lectin with potent antiviral properties that is capable of preventing and treating infections caused by a number of enveloped viruses (including HIV, SARS, HCV, HSV, and Japanese encephalitis) and is currently in clinical development as an anti-HIV microbicide. In addition to its broad antiviral activity, GRFT is stable at high temperature and at a broad pH range, displays low toxicity and immunogenicity, and is amenable to large-scale manufacturing.

Methods for Selection of Cancer Patients and Predicting Efficacy of Combination Therapy

Available for licensing from the Laboratory of Cancer Biology and Genetics of the National Cancer Institute (NCI) is a novel gene signature of thirty-seven drug-responsive genes that links changes in gene expression to the clinically desirable outcome of improved overall survival. Expression of these genes has been linked to prognosis in several cancers, including, but not limited to: multiple myeloma, melanoma, and lung and breast cancers.

Fully Human Antibodies and Antibody Drug Conjugates Targeting CD276 (B7-H3) for the Treatment of Cancer

Angiogenesis is the formation of new blood vessels from pre-existing blood vessels. Angiogenesis occurs during normal growth and development, where it is known as physiological angiogenesis, and during the growth of solid tumors, where it is known as pathological angiogenesis. CD276, also known as B7-H3, is a cell surface tumor endothelial marker that is highly expressed in the tumor vessels of human lung, breast, colon, endometrial, renal, and ovarian cancer, but not in the angiogenic vessels of healthy tissue.