Multivalent, Multiple-Antigenic-Peptides for Serological Detection of HIV-1 Groups -M, -N, -O, and HIV-2

This CDC-developed invention pertains to multivalent antigenic peptides (MAPs) that can be used in a variety of HIV/AIDS diagnostics. There are two types of HIV: HIV-1 and HIV-2. HIV-1 is subdivided into groups M, N, and O, while HIV-2 is subdivided into subtypes A and B. Within HIV -1 group M, several different subtypes and numerous forms of recombinant viruses exist. To detect all types, groups, and subtypes of HIV by serological methods, a mixture of antigens derived from different viral strains representing different HIV types and subtypes is needed.

Cable-line Safety System: Electro/hydraulic Emergency Stop Device for a Winch, Drum or Capstan

This CDC-developed invention entails a system of electrical and hydraulic circuits used to stop a rotating winch in an emergency. Amongst other locations, one stop switch can be positioned on a capstan winch horn. This location makes it available to a victim entangled in rope being retrieved on a gypsy drum. As designed, the stop circuit could be used with an electrically, hydraulically or pneumatically operated winch. A variant of this safety system has been successfully tested on a purse seining fishing vessel in Alaskan waters.

Computer Controlled Aerosol Generator with Multi-Walled Carbon Nanotube Inhalation Testing Capabilities

This invention pertains to a CDC developed sonic aerosol generator that provides a controllable, stable concentration of particulate aerosol over a long period of time for aerosol exposure studies. Specifically, in situ testing data indicate uniform aerosol stability can be maintainable for greater than 30 hours at concentrations of 15 mg/m3 or more. Additionally, the technology was specifically developed for, and validated in, animal studies assessing exposure to airborne multi-walled carbon nanotubes (MWCNT).

Deconvolution Software for Modern Fluorescence Microscopy

This software invention pertains to Joint Richardson-Lucy (RL) deconvolution methods used to combine multiple images of an object into a single image for improving resolution in modern fluorescence microscopy. RL deconvolution merges images with very different point spread functions, such as in multi-view light-sheet microscopes, while preserving the best resolution information present in each image.

Human Influenza Virus Real-time RT-PCR: Detection and Discrimination of Influenza A (H3N2) Variant from Seasonal Influenza A (H3N2) Viruses, Including H3v and Seasonal H3 Assays

This invention relates to methods of rapidly detecting influenza, including differentiating between type and subtype. CDC researchers have developed a rapid, accurate, real-time RT-PCR assay that has several advantages over culture and serological tests, which require 5 to 14 days for completion; this assay can also be easily implemented in kit form. To date, hundreds of human cases of infection with the H3N2 variant virus have been confirmed.

Dengue Vaccines: Tools for Redirecting the Immune Response for Safe, Efficacious Dengue Vaccination

This CDC-developed invention relates to dengue vaccines that have been specifically developed for improved efficacy and directed immune response to avoid antibody-dependent enhancement (ADE) safety issues that, theoretically, may be associated with dengue vaccines and vaccinations. Dengue viral infection typically causes a debilitating but non-lethal illness in hosts.

Human iPSC-Derived Mesodermal Precursor Cells and Differentiated Cells

Cells, cell culture methods, and cell culture media compositions useful for producing and maintaining iPSC-derived cell lines that are of higher purity and maintain cell type integrity better than current iPSC-derived cell lines are disclosed. Human induced pluripotent stem cells (hiPSCs) can be generated by reprogramming somatic cells by the expression of four transcription factors. The hiPSCs exhibit similar properties to human embryonic stem cells, including the ability to self-renew and differentiate into all three embryonic germ layers: ectoderm, endoderm, or mesoderm.

Compositions and Methods for Improved Lyme Disease Diagnosis

This CDC-developed technology entails novel compositions and methods related to the diagnosis of Lyme disease. Lyme disease, caused by the Borrelia burgdorferi bacterium, is the most common tick-borne infectious disease in the US and Europe. Diagnosis of Lyme disease is particularly challenging as symptoms often appear long after exposure. At present, the only FDA-approved diagnostic for Lyme disease involves patient blood tests for particular antibodies; these include an ELISA to measure patient antibody levels and a Western blot assay to detect antibodies specific to B.

Compositions for Modification of Genomic DNA and Exogenous Gene Expression

A novel method of targeted insertion of transgenes at CLYBL locus directly in human cells is disclosed. Also, methods and compositions for increasing targeted insertion of a transgene into a specific location within the cell or increasing the frequency of gene modification in a targeted locus are disclosed. Genome modification by precise gene targeting at specific sequence/locus has great advantages over conventional transient expression or random integration methodologies and, therefore, has tremendous therapeutic potential.

Engineering Neural Stem Cells Using Homologous Recombination

Methods for modifying the genome of a Neural Stem Cell (NSC) are disclosed. Also, methods for differentiating NSCs into neurons and glia are described. NSCs are multipotent, self-renewing cells found in the central nervous system, capable of differentiating into neurons and glia. NSCs can be generated efficiently from pluripotent stem cells (PSCs) and have the capacity to differentiate into any neuronal or glial cell type of the central nervous system.