Fluorescent Primer(s) Creation for Nucleic Acid Detection and Amplification

CDC researchers have developed technology that consists of a simple and inexpensive technique for creating fluorescent labeled primers for nucleic acid amplification. Fluorescent chemical-labeled probes and primers are extensively used in clinical and research laboratories for rapid, real-time detection and identification of microbes and genetic sequences. During nucleic acid amplification, the "UniFluor" primer is incorporated into newly synthesized double stranded DNA.

Photoinduced Electron Transfer Fluorescent Primer for Nucleic Acid Amplification

CDC scientists have developed a rapid and cost-efficient method for generating fluorescently labeled primers for PCR and real-time PCR. At present, fluorescent primers are useful for detecting and identifying microbes and specific nucleic acid sequences, amplifying nucleic acids for pyro-sequencing, determining the levels of gene expression, and many other uses. However, problems exist with current techniques used to create fluorescent primers. For one, labeling is not one hundred percent efficient, leading to inaccurate results.

Automated Microscopic Image Acquisition, Compositing and Display Software Developed for Applied Microscopy/Cytology Training and Analysis

Micro-Screen is a CDC developed software program designed to capture images and archive and display a compiled image(s) from a portion of a microscope slide in real time. This program allows for the re-creation of larger images that are constructed from individual microscopic fields captured in up to five focal planes and two magnifications. This program may be especially useful for the creation of data archives for diagnostic and teaching purposes and for tracking histological changes during disease progression.

Methods of Retaining Methylation Pattern Information in Globally Amplified DNA

CDC researchers have developed a novel method that generates globally amplified DNA copies retaining parental methylation information; making accurate DNA-archiving for methylation studies much more feasible and cost-effective than undertaking such an endeavor with alternate technologies. This unique approach eliminates a significant bottleneck in the collection of methylation information in the genome(s) of an individual organism, hosts and pathogens.

Novel Magnetic Resonance Spectroscopy (MRS) Technique to Quantify Brain Metabolites

With respect to quantification of metabolites in the brain, conventional methods of magnetic resonance spectroscopy (MRS) yield results that are highly variable and highly dependent on the sequence type being applied. This invention describes a novel MRS technique that involves preparing longitudinal steady states at different flip angles using trains of RF pulses interspersed with field gradients to quantify metabolites.

A Novel Reagent for Labeling PET Tracers at Trifluoromethyl Groups

The molecular imaging technique of positron emission tomography (PET) is an increasingly important tool in biomedical research and in drug discovery and development. Many small molecule drugs and potential PET radiotracers carry trifluoromethyl (CF3) groups. Because CF3 groups are generally considered to be metabolically stable, there is a strong interest in developing drugs with these groups.

Novel Dopamine D2 Receptor Antagonists and Methods of Their Use

Investigators at the NIH have identified a series of novel, small molecule antagonists of the dopamine D2 receptor. Among the dopamine receptor (DAR) subtypes, D2 DAR is arguably one of the most validated drug targets in neurology and psychiatry. For instance, all receptor-based anti-Parkinsonian drugs work via stimulating the D2 DAR, whereas all FDA approved antipsychotic agents are antagonists of this receptor. Unfortunately, most agents that act as antagonists of D2 DAR are problematic, either they are less efficacious than desired or cause multiple adverse effects.

Methods of Synthesis of the Ketamine Analogs (2R, 6R)-kydroxynorketamine and (2S, 6S)-hydroxynorketamine for the Treatment of Pain and other Anxiety-related Disorders

This technology includes a method for synthesizing the ketamine analogs (2R,6R)-hydroxynorketamine (HNK) and (2S,6S)-hydroxynorketamine that may be useful for the treatment of pain, depression, anxiety, and related disorders. The drug ketamine was first used as an anesthetic but was found to be an effective treatment in a range of conditions, including paint, treatment-resistant bipolar depression, and other anxiety-related disorders. However, the routine use of ketamine is hindered by unwanted side effects, including the potential for abuse.

A Mood-Machine-Interface as an Intervention for Emotional Self-Regulation in Real-Time

This technology relates to a closed-loop controller that is being developed as a phone app for emotional self-regulation in real-time. There is a significant association between emotion dysregulation and symptoms of depression, anxiety, eating pathology, and substance abuse, affecting millions worldwide. Consisting of a closed-loop controller that adjusts reward values in real-time according to individual mood response, the Mood Machine Interface technology compensates for adaptation to stimuli over time allowing it to generate substantial mood changes in the user.