Multimeric Protein Toxins to Target Cells Having Multiple Identifying Characteristics

This technology relates to multimeric bacterial protein toxins which can be used to specifically target cells. Specifically, this is a modified recombinant anthrax toxin protective antigen (PrAg) that has been modified in several ways. First, the PrAg can be activated both by a metalloproteinase (MMP) and by urokinase plasminogen activator (uPA). Second, the native PrAg lethal factor (LF) binding site has been modified so that only a modified PrAg comprising two different monomers can bind anthrax LF.

Transcytosis of Adeno-Associated Viruses

The invention relates to a method for delivering nucleic acids to a variety of cells including those of the gut, kidney, lung and central nervous system. The underlying cells of such organs are covered by a barrier of endothelial or epithelial cells which can limit the transfer of nucleic acids, or other potentially therapeutic agents, to the underlying target cells. To overcome this limitation, the method employs certain members of the parvovirus family to transcytose the barrier cells.

Construction of Recombinant Baculoviruses Carrying the Gene Encoding the Major Capsid Protein, VP1, From Calicivirus Strains (Including Norovirus Strains Toronto, Hawaii, Desert Shield, Snow Mountain, and MD145-12)

The noroviruses (known as "Norwalk-like viruses") are associated with an estimated 23,000,000 cases of acute gastroenteritis in the United States each year. Norovirus illness often occurs in outbreaks, affecting large numbers of individuals, illustrated recently by well-publicized reports of gastroenteritis outbreaks on several recreational cruise ships and in settings such as hospitals and schools.

Construction of an Infectious Full-Length cDNA Clone of the Porcine Enteric Calicivirus RNA Genome

Porcine enteric calicivirus (PEC) is a member of the genus Sapovirus in the family Caliciviridae. This virus causes diarrheal illness in pigs, and is presently the only enteric calicivirus that can be grown in cell culture. In addition to its relevance to veterinary medicine as a diarrheal agent in pigs, PEC serves as an important model for the study of enteric caliciviruses that cause diarrhea and that cannot be grown in cell culture (including the noroviruses represented by Norwalk virus).

Enzymatically-Active RNA-Dependent RNA Polymerase From a Human Norovirus (Calicivirus)

The noroviruses (formerly known as “Norwalk-like viruses”) are associated with gastroenteritis outbreaks, affecting large numbers of individuals each year. Emerging data are supporting their increasing recognition as important agents of diarrhea-related morbidity and mortality. The frequency with which noroviruses are associated with gastroenteritis as “food and water-borne pathogens” has led to the inclusion of caliciviruses as Category B Bioterrorism Agents/Diseases.

Full-Length cDNA Clone Representing the Consensus Sequence of the RNA Genome of a Human Norovirus (strain MD145-12) That Encodes Biologically Active Proteins

The invention provides for a full-length cloned cDNA copy of the RNA genome of a predominant norovirus strain (Genogroup II.4) designated MD145-12 that was associated with human gastrointestinal illness. The noroviruses, which were formerly known as "Norwalk-like" viruses are estimated to cause 23 million cases of acute gastroenteritis in the USA each year. The virus has been designated into category B of the CDC biodefense-related priority pathogens because it can be used as an agent of bioterrorism.

Cloning and Characterization of an Avian Adeno-Associated Virus and Uses Thereof

Currently, adeno-associated virus (AAV) represents the gene therapy vehicle of choice because it has many advantages over current strategies for therapeutic gene insertion. AAV is less pathogenic than other virus types; stably integrates into dividing and non-dividing cells; integrates at a consistent site in the host genome; and shows good specificity towards various cell types for targeted gene delivery.

Regulation of RNA Stability

This invention relates to the discovery that tristetraprolin (TTP) can promote the poly(A)RNase (PARN) mediated deadenylation of polyadenylated substrates containing AU-rich elements (AREs). As one aspect of the invention, the inventors have developed a cell free system that may be used for the purposes of assessing the effects of the various system components or their derivatives (i.e. AREs, PARN, or TTP) on the deadenylation process or the effects of various test agents on the deadenylation process.

Vaccines Comprising Sand Fly Salivary Proteins for Control of Leishmania Infection

This invention relates to the use of several peptides from the salivary glands of various sand fly species for the control of leishmania infection. Many of these peptides were shown to be effective in eliciting potent immune responses in animal models and are excellent candidates for the development of vaccines against the disease. A vaccine comprising one of the peptides was used to protect mice challenged with parasites and salivary gland homogenates.

Isolation of Hybridomas Producing Monoclonal Antibodies (MAbs) Inhibitory to Human CYP2J2

The National Institutes of Health announces three specific monoclonal antibodies that strongly inhibit and/or immunoblot the human cytochrome P450 2J2 (CYP2J2).

Cytochrome P450s catalyze the NADPH-dependent oxidation of arachidonic acid to various eicosanoids found in several species. The eicosanoids are biosynthesized in numerous tissues including pancreas, intestine, kidney, heart and lung where they are involved in many different biological activities.