Inhibition of T Cell Lactate Dehydrogenase (LDH) ex vivo Enhances the Anti-tumor Efficacy of Adoptive T Cell Therapy

Adoptive T cell therapy (ACT) with tumor infiltrating lymphocytes (TIL), T cell receptor (TCR) and Chimeric Antigen Receptor (CAR) engineered T cells, or hematopoietic stem cell transplantation, is a promising new approach to cancer treatment. ACT harnesses an individual's adaptive immune system to fight against cancer, with fewer side-effects and more specific anti-tumor activity. Despite their promise of ACT as curative, these therapies are often limited by the persistence and robustness of the responses of the T cells to the cancer cells.

Use of Anti-CD47 Antibodies for the Treatment of Cancer

High expression of CD47, a cell surface receptor on several types of cancer cells, has been identified as a ‘don’t eat me signal’ that inhibits their killing by macrophages or NK cells. Conversely, the CD47 antibody B6H12 that blocks SIRPα binding enhances macrophage-dependent clearance of tumors in several mouse models, although others have shown that such clearance can be independent of SIRPα signaling.

89Zr-Oxine Complex for In Vivo PET Imaging of Labelled Cells and Associated Methods

This technology from the NCI Molecular Imaging Program relates to a Zirconium-89 (89Zr)-oxine complex for cell labeling, tracking of labeled cells by whole-body positron emission tomography/computed tomography (PET/CT) imaging, and associated methods. A long half-life of 89Zr (78.4 hours), high sensitivity of PET, and absence of background signal in the recipient enable tracking cells over a week using low levels of labeling radioactivity without causing cellular toxicity.

Topical Sodium Nitrate Ointment for Sickle Cell Disease

Chronic leg ulcers are a debilitating vasculopathic complication for some patients with sickle cell disease (SCD). Prevalence of leg ulcers varies based on age and geographic location; about 5-10% of all SCD patients may suffer leg ulcers. These leg ulcers are painful, result in infections, hospitalization, disability, and negatively impact the patient’s social and psychological wellbeing on an ongoing basis.

ApoA-1 Mimetic Peptides Promoting Lipid Efflux from Cells for Treatment of Vascular Disorders

This invention involves ApoA-1 mimetic peptides with multiple amphipathic alpha-helical domains that promote lipid efflux from cells and are useful in the treatment and prevention of dyslipidemic, inflammatory and vascular disorders. IND-enabling studies for one of the peptides, named Fx-5A, are completed in preparation for an IND filing at the FDA, to be followed by a Phase I clinical trial planned for 2017.

Methods for Diagnosis of Atherosclerosis

The identification of more sensitive and specific markers of atherosclerosis that are non-invasive and cost-effective may have profound impacts on public health. One such strategy involves the detection of marker genes or their products in blood or serum. Such markers may help identify high-risk patients with subclinical atherosclerosis who may benefit from intensive primary prevention or they may help determine the activity of established disease for monitoring response to treatment, resulting in more targeted secondary prevention.

Infectious Clone of Human Parvovirus B19 and Methods of Use

This technology described in this patent application relates the first reported infectious human parvovirus B19 clone, methods of cloning the parvovirus B19 genome as well as other viral genomes that have secondary DNA structures that are unstable in bacterial cells. The infectious clone and methods of producing the same would be useful in producing infectious virus, which can in turn be used, among other things, to identify and develop therapeutic agents for treatment and/or prevention of human parvovirus B19 infections. The infectious parvovirus B19 clone is also available for licensing.

AAV4 Vector and Uses Thereof

The invention described and claimed in this patent application relates to the delivery of heterologous nucleic acids or genes to particular target cells. In particular, the application relates to methods of delivering a heterologous nucleic acid or gene of interest to particular target cells using Adeno-Associated Virus of serotype 4 (AAV4). The particular target cells identified are the ependymal cells of the brain. The methods described herein may be useful in carrying out gene therapy for diseases of the brain or central nervous system.