T Cell Receptors Targeting CDKN2A Mutations for Cancer Immunotherapy

Cyclin-dependent kinase inhibitor 2A gene, also known as CDKN2A, is a tumor suppressor gene and is commonly inactivated through somatic mutations in many human cancers. For example, inactivation of CDKN2A is highly prevalent in melanoma, gastrointestinal and pancreatic cancers. Through germline mutations, CDKN2A is associated with predisposition for a variety of cancers, including melanoma and pancreatic cancers. Despite the high frequency of CDKN2A mutations in cancer, there have been no successful therapies targeting these mutations to date.

Methods for Producing Stem Cell-Like Memory T Cells for Use in T Cell-Based Immunotherapies

T cells currently employed for T cell-based immunotherapies are often senescent, terminally differentiated cells with poor proliferative and survival capacity. Recently, however, scientists at the National Cancer Institute (NCI) identified and characterized a new human memory T cell population with stem cell-like properties. Since these T cells have limited quantities in vivo, the scientists have developed methods by which high numbers of these cells can be generated ex vivo for use in T cell-based immunotherapies.

Peptide Hydrogels for Rate-Controlled Delivery of Therapeutics

Hydrogels represent an attractive controlled drug-delivery system that have been used in various clinical applications, such as: tissue engineering for wound healing, surgical procedures, pain management, cardiology, and oncology. High-water content of hydrogels confers tissue-like physical properties and the crosslinked fibrillar network enables encapsulation of labile small molecule drugs, peptides, proteins, nucleic acids, proteins, nanoparticles, or cells.

A Viral Exposure Signature to Define and Detect Early Onset Hepatocellular Carcinoma

Early detection of liver cancer, such as hepatocellular carcinoma (HCC), is key to improve cancer-related mortality. More than 800,000 people are diagnosed with this cancer each year throughout the world. Liver cancer is also a leading cause of cancer deaths worldwide, accounting for more than 700,000 deaths each year. Currently, millions of Americans and possibly billions in the world are considered at risk for developing liver cancer.

Monoclonal Antibodies and Immunoconjugates Directed to the Non-ShedPortion (“Stalk”) of Mesothelin are Excellent Candidates for Developing Therapeutic Agents

Human mesothelin is overexpressed by various cancers such as synovial sarcoma, mesothelioma, and ovarian, lung, esophageal, and gastric cancers. This selective expression on certain cancers suggests that mesothelin is an excellent target for anticancer therapeutics. However, a large fragment (“the shed portion”) of mesothelin is constantly shed from cells, and all current anti-mesothelin antibodies bind to the shed portion.

T cell Receptors Which Recognize Mutated EGFR

Epidermal growth factor receptor (EGFR) is a transmembrane protein involved in cell growth and proliferation. Mutations in this protein can lead to overexpression, causing several types of cancer; notably, non-small cell lung cancer (NSCLC). For example, mutations in EGFR are found in up to 50% of NSCLC patients and the E746-A750 deletion accounts for 30-40% of such EGFR mutations. Currently, there are no available therapeutics that specifically target the E746-A750 deletion. 

Human T Cell Receptors for Treating Cancer

T cell receptors (TCRs) are proteins that recognize antigens in the context of infected or transformed cells and activate T cells to mediate an immune response and destroy abnormal cells. TCRs consist of two domains, one variable domain that recognizes the antigen and one constant region that helps the TCR anchor to the membrane and transmit recognition signals by interacting with other proteins. When a TCR is stimulated by an antigen, such as a tumor antigen, some signaling pathways activated in the cell lead to the production of cytokines, which mediate the immune response.

Mice, Organs, and Mouse Alleles Carrying Germline and Conditional Deletions of the Zbtb7b Gene

The Zbtb7b gene encodes the zinc finger transcription factor ThPOK (also known as cKrox) that promotes CD4 lineage differentiation in immature T cells. CD4+ T cells, also known as “helper” T cells, are critical for long-term immunity against pathogens as well as for promoting CD8+ “effector” T cell and effective B cell responses. ThPOK is needed for the development and functional fitness of CD4+ T cells as well as multiple aspects of the immune response to infection. As such, ThPOK offers a potential target for immune regulation.

Highly Soluble Pyrimido-Dione-Quinoline Compounds: Small Molecules that Stabilize and Activate p53 in Transformed Cells

The tumor-suppressor p53 protein plays a major role in tumor development. Most human cancers fail to normally activate wild-type p53, which is at least partly responsible for the unregulated growth of cancer cells and their failure to undergo apoptosis. While many chemotherapeutics enhance p53 levels, their non-specific DNA damage (genotoxicity) causes unfavorable side effects.